论文标题

图像作为重量矩阵:通过突触学习规则生成顺序图像

Images as Weight Matrices: Sequential Image Generation Through Synaptic Learning Rules

论文作者

Irie, Kazuki, Schmidhuber, Jürgen

论文摘要

快速体重程序员的工作证明了基于关键/价值外产品的学习规则的有效性,以依次由另一个NN或本身生成神经网(NN)的权重矩阵(WM)。但是,重量生成步骤通常在人类上不可视觉上解释,因为NN的WM中存储的内容不是。在这里,我们应用相同的原理来生成自然图像。由此产生的快速体重画家(FPA)学会执行Delta学习规则的序列,以顺序生成图像作为自发键和值的外部产品的总和,一次是一个排名,就好像每个图像都是NN的WM。我们在生成对抗网络框架中训练我们的FPA,并在各种图像数据集上进行评估。我们展示了这些通用学习规则如何以可观的视觉质量生成图像,而不会对图像进行任何明显的归纳偏见。尽管性能在很大程度上落后于专门的最先进的图像发生器之一,但我们的方法允许可视化突触学习规则如何迭代地产生复杂的连接模式,从而产生人类解动的有意义的图像。最后,我们还表明,FPA输出的额外卷积U-NET(现在在扩散模型中流行)可以学习FPA生成图像的单步“ Denoising”,以提高其质量。我们的代码是公开的。

Work on fast weight programmers has demonstrated the effectiveness of key/value outer product-based learning rules for sequentially generating a weight matrix (WM) of a neural net (NN) by another NN or itself. However, the weight generation steps are typically not visually interpretable by humans, because the contents stored in the WM of an NN are not. Here we apply the same principle to generate natural images. The resulting fast weight painters (FPAs) learn to execute sequences of delta learning rules to sequentially generate images as sums of outer products of self-invented keys and values, one rank at a time, as if each image was a WM of an NN. We train our FPAs in the generative adversarial networks framework, and evaluate on various image datasets. We show how these generic learning rules can generate images with respectable visual quality without any explicit inductive bias for images. While the performance largely lags behind the one of specialised state-of-the-art image generators, our approach allows for visualising how synaptic learning rules iteratively produce complex connection patterns, yielding human-interpretable meaningful images. Finally, we also show that an additional convolutional U-Net (now popular in diffusion models) at the output of an FPA can learn one-step "denoising" of FPA-generated images to enhance their quality. Our code is public.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源