论文标题
视觉提示对抗性鲁棒性
Visual Prompting for Adversarial Robustness
论文作者
论文摘要
在这项工作中,我们利用视觉提示(VP)来改善测试时固定的预训练模型的对抗性鲁棒性。与常规的对抗防御相比,VP允许我们设计通用(即数据不合时式)输入提示模板,这些模板在测试时间具有插件功能,以实现所需的模型性能而无需引入大量计算开销。尽管副总裁已成功地应用于改进模型的概括,但是否以及如何使用它来防御对抗攻击仍然难以捉摸。我们调查了这个问题,并表明香草VP方法在对抗防御中无效,因为通用输入提示缺乏针对特定样本特定的对抗扰动的强大学习能力。为了绕过它,我们提出了一种新的VP方法,称为“阶级对抗性视觉提示”(C-AVP),以生成班级视觉提示,以便不仅利用集合提示的优势,而且还优化了它们的相互关系以提高模型鲁棒性。我们的实验表明,C-AVP的表现优于常规VP方法,具有2.1倍的标准精度增益和2倍鲁棒精度增益。与经典的测试时间防御量相比,C-AVP还产生了42倍的推理时间加速。
In this work, we leverage visual prompting (VP) to improve adversarial robustness of a fixed, pre-trained model at testing time. Compared to conventional adversarial defenses, VP allows us to design universal (i.e., data-agnostic) input prompting templates, which have plug-and-play capabilities at testing time to achieve desired model performance without introducing much computation overhead. Although VP has been successfully applied to improving model generalization, it remains elusive whether and how it can be used to defend against adversarial attacks. We investigate this problem and show that the vanilla VP approach is not effective in adversarial defense since a universal input prompt lacks the capacity for robust learning against sample-specific adversarial perturbations. To circumvent it, we propose a new VP method, termed Class-wise Adversarial Visual Prompting (C-AVP), to generate class-wise visual prompts so as to not only leverage the strengths of ensemble prompts but also optimize their interrelations to improve model robustness. Our experiments show that C-AVP outperforms the conventional VP method, with 2.1X standard accuracy gain and 2X robust accuracy gain. Compared to classical test-time defenses, C-AVP also yields a 42X inference time speedup.