论文标题

ISCOM:点云视频流的兴趣感知语义通信方案

ISCom: Interest-aware Semantic Communication Scheme for Point Cloud Video Streaming

论文作者

Huang, Yakun, Bai, Boyuan, Zhu, Yuanwei, Qiao, Xiuquan, Su, Xiang, Zhang, Ping

论文摘要

在普遍的移动设备上流式传输的沉浸点云视频(PCV)的配置是实现未来6G元元时代的沉浸式沟通和互动的基石。但是,大多数流媒体技术都致力于有效的PCV压缩,并从传统的3-DOF视频服务中延伸。一些新兴的AI支持方法仍处于起步阶段,并且受密集的计算和适应性流动技术的约束。在本文中,我们介绍了ISCOM,这是PCV的兴趣感知语义通信方案,该方案由利益区域(ROI)选择模块,轻质PCV流媒体模块和智能调度程序组成。首先,我们提出了一种两阶段有效的ROI选择方法,用于提供感兴趣的PCV流,从而大大减少了数据量。其次,我们为资源受限的设备设计了一个轻巧的PCV编码器网络,适应终端的异质计算功能。第三,我们考虑了不同设备的动态网络环境和计算功能,我们训练基于深入的增强学习(DRL)的调度程序,以适应各种设备的最佳编码器网络。广泛的实验表明,ISCOM在移动设备上的表现优于至少10 fps和多达22 fps的基准。

The provisioning of immersive point cloud video (PCV) streaming on pervasive mobile devices is a cornerstone for enabling immersive communication and interactions in the future 6G metaverse era. However, most streaming techniques are dedicated to efficient PCV compression and codec extending from traditional 3-DoF video services. Some emerging AI-enabled approaches are still in their infancy phase and are constrained by intensive computational and adaptive flow techniques. In this paper, we present ISCom, an Interest-aware Semantic Communication Scheme for PCV, consisting of a region-of-interest (ROI) selection module, a lightweight PCV streaming module, and an intelligent scheduler. First, we propose a two-stage efficient ROI selection method for providing interest-aware PCV streaming, which significantly reduces the data volume. Second, we design a lightweight PCV encoder-decoder network for resource-constrained devices, adapting to the heterogeneous computing capabilities of terminals. Third, we train a deep reinforcement learning (DRL)-based scheduler to adapt an optimal encoder-decoder network for various devices, considering the dynamic network environments and computing capabilities of different devices. Extensive experiments show that ISCom outperforms baselines on mobile devices at least 10 FPS and up to 22 FPS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源