论文标题

用于公制切换在节拍跟踪中的分析方法

An Analysis Method for Metric-Level Switching in Beat Tracking

论文作者

Chiu, Ching-Yu, Müller, Meinard, Davies, Matthew E. P., Su, Alvin Wen-Yu, Yang, Yi-Hsuan

论文摘要

对于富有表现力的音乐,节奏可能会随着时间的流逝而改变,这对通过自动模型跟踪节拍的挑战提出了挑战。该模型可以首先点击正确的节奏,但可能无法适应速度更改,或者在几个不正确但具有感知的合理的速度(例如,半为或双感)之间进行切换。 BEAT跟踪的现有评估指标并不能反映这种行为,因为它们通常假设参考节拍与估计的节拍之间存在固定关系。在本文中,我们提出了一种称为注释覆盖率(ACR)的新绩效分析方法,该方法占节拍跟踪器的各种可能的度量级别切换行为。这个想法是在每两个连续的参考节拍中得出所有度量级别的修改参考节拍的序列,并将修改后的参考节拍的每个序列与估计节拍的子序列进行比较。我们通过在不同类型的三个数据集上的实验显示ACR与现有指标一起使用时的有用性,并讨论要获得的新见解。

For expressive music, the tempo may change over time, posing challenges to tracking the beats by an automatic model. The model may first tap to the correct tempo, but then may fail to adapt to a tempo change, or switch between several incorrect but perceptually plausible ones (e.g., half- or double-tempo). Existing evaluation metrics for beat tracking do not reflect such behaviors, as they typically assume a fixed relationship between the reference beats and estimated beats. In this paper, we propose a new performance analysis method, called annotation coverage ratio (ACR), that accounts for a variety of possible metric-level switching behaviors of beat trackers. The idea is to derive sequences of modified reference beats of all metrical levels for every two consecutive reference beats, and compare every sequence of modified reference beats to the subsequences of estimated beats. We show via experiments on three datasets of different genres the usefulness of ACR when utilized alongside existing metrics, and discuss the new insights to be gained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源