论文标题

基于隐藏的乘数的多收件和阈值加密

Multi-recipient and threshold encryption based on hidden multipliers

论文作者

Roman'kov, Vitaly

论文摘要

让$ s $是$ s $ partions的池,而爱丽丝则为经销商。在本文中,我们提出了一项计划,该方案允许经销商以这样的方式对消息进行加密,以至于只有一个授权的当事方(经销商根据消息选择)可以解密。在设置阶段,该过程中涉及的每个各方都会从经销商处接收单独的密钥。要解密信息,当事方的授权联盟必须共同努力以使用其钥匙。基于此方案,我们提出了一个阈值加密方案。对于给定的消息$ f $,经销商可以选择任何门槛$ m = m(f)。任何小于$ m $的尺寸都无法做到这一点。同样,可以以授权的当事方联盟的方式来完成包含各方之间的密钥分布,这将有机会在任何文件上放置集体数字签名。该原始性可以推广到动态设置,任何用户都可以动态地加入池$ S $。在这种情况下,新用户会从经销商处收到密钥。此外,任何用户都可以离开池$ S $。在这两种情况下,已经分发了其他用户的键都不会更改。提出的方案的主要功能是,对于给定的$ s $,键是一次分发,可以多次使用。 所提出的方案基于加密中隐藏的乘数的概念。作为一个平台,人们可以使用有限场和可逆元素的乘法组,尤其是残基环的乘法组。我们建议该方案的两个版本。

Let $S$ be a pool of $s$ parties and Alice be the dealer. In this paper, we propose a scheme that allows the dealer to encrypt messages in such a way that only one authorized coalition of parties (which the dealer chooses depending on the message) can decrypt. At the setup stage, each of the parties involved in the process receives an individual key from the dealer. To decrypt information, an authorized coalition of parties must work together to use their keys. Based on this scheme, we propose a threshold encryption scheme. For a given message $f$ the dealer can choose any threshold $m = m(f).$ More precisely, any set of parties of size at least $m$ can evaluate $f$; any set of size less than $m$ cannot do this. Similarly, the distribution of keys among the included parties can be done in such a way that authorized coalitions of parties will be given the opportunity to put a collective digital signature on any documents. This primitive can be generalized to the dynamic setting, where any user can dynamically join the pool $S$. In this case the new user receives a key from the dealer. Also any user can leave the pool $S$. In both cases, already distributed keys of other users do not change. The main feature of the proposed schemes is that for a given $s$ the keys are distributed once and can be used multiple times. The proposed scheme is based on the idea of hidden multipliers in encryption. As a platform, one can use both multiplicative groups of finite fields and groups of invertible elements of commutative rings, in particular, multiplicative groups of residue rings. We propose two versions of this scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源