论文标题

在行动预测中找到可预测性的岛屿

Finding Islands of Predictability in Action Forecasting

论文作者

Scarafoni, Daniel, Essa, Irfan, Ploetz, Thomas

论文摘要

我们解决了密集的动作预测:基于部分观察的长时间预测未来动作序列的问题。我们的主要见解是,将来的动作序列更准确地使用可变的,而不是一个抽象级别建模,并且可以在预测过程中动态选择最佳抽象水平。我们的实验表明,未来动作序列的大部分部分只能在未来的框架的一小部分中进行良好的细节来预测,这些框架实际上是对不确定性的``海上''的高模型预测信心的``岛屿''。我们提出了一个组合贝叶斯神经网络和分层卷积分割模型,以准确预测未来的动作并最佳选择抽象水平。我们在标准数据集上针对现有的最新系统评估了这种方法,并证明我们的``可预测性岛''岛可以保持精细的动作预测,同时还进行了精确的抽象预测,而系统以前无法做到这一点,从而导致准确性的实质性,单调提高。

We address dense action forecasting: the problem of predicting future action sequence over long durations based on partial observation. Our key insight is that future action sequences are more accurately modeled with variable, rather than one, levels of abstraction, and that the optimal level of abstraction can be dynamically selected during the prediction process. Our experiments show that most parts of future action sequences can be predicted confidently in fine detail only in small segments of future frames, which are effectively ``islands'' of high model prediction confidence in a ``sea'' of uncertainty. We propose a combination Bayesian neural network and hierarchical convolutional segmentation model to both accurately predict future actions and optimally select abstraction levels. We evaluate this approach on standard datasets against existing state-of-the-art systems and demonstrate that our ``islands of predictability'' approach maintains fine-grained action predictions while also making accurate abstract predictions where systems were previously unable to do so, and thus results in substantial, monotonic increases in accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源