论文标题

在非线性后混合物下的可证明的子空间识别

Provable Subspace Identification Under Post-Nonlinear Mixtures

论文作者

Lyu, Qi, Fu, Xiao

论文摘要

无监督的混合学习(UML)旨在以盲目的方式识别线性或非线性混合的潜在组件。已知UML具有挑战性:即使学习线性混合物也需要高度非平凡的分析工具,例如独立的组件分析或非负矩阵分解。在这项工作中,重新审视了非元素的非线性非线性函数的非元素(PNL)混合模型。 PNL模型广泛用于不同领域,从大脑信号分类,语音分离,遥感到因果发现。为了识别和删除未知的非线性函数,现有作品通常在潜在组件(例如统计独立性或概率 - 简单结构)上假设不同的属性。 这项工作表明,在经过精心设计的UML标准下,存在与基础混合系统相关的非平凡的空空间,足以保证识别/去除未知的非线性。与先前的工作相比,我们的发现很大程度上放宽了达到PNL可识别性的条件,因此可能会使不知道潜在组件的强大结构信息的应用有益。提供有限样本分析以表征在现实设置下所提出的方法的性能。为了实施拟议的学习标准,提出了块坐标下降算法。一系列数值实验证实了我们的理论主张。

Unsupervised mixture learning (UML) aims at identifying linearly or nonlinearly mixed latent components in a blind manner. UML is known to be challenging: Even learning linear mixtures requires highly nontrivial analytical tools, e.g., independent component analysis or nonnegative matrix factorization. In this work, the post-nonlinear (PNL) mixture model -- where unknown element-wise nonlinear functions are imposed onto a linear mixture -- is revisited. The PNL model is widely employed in different fields ranging from brain signal classification, speech separation, remote sensing, to causal discovery. To identify and remove the unknown nonlinear functions, existing works often assume different properties on the latent components (e.g., statistical independence or probability-simplex structures). This work shows that under a carefully designed UML criterion, the existence of a nontrivial null space associated with the underlying mixing system suffices to guarantee identification/removal of the unknown nonlinearity. Compared to prior works, our finding largely relaxes the conditions of attaining PNL identifiability, and thus may benefit applications where no strong structural information on the latent components is known. A finite-sample analysis is offered to characterize the performance of the proposed approach under realistic settings. To implement the proposed learning criterion, a block coordinate descent algorithm is proposed. A series of numerical experiments corroborate our theoretical claims.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源