论文标题
ISTA启发的网络用于图像超分辨率
ISTA-Inspired Network for Image Super-Resolution
论文作者
论文摘要
近年来,许多研究人员都研究了图像超分辨率(SR)的深度学习。大多数作品都集中在有效的块设计上并改善网络表示,但缺乏解释。还有针对图像SR的迭代优化启发的网络,这些网络是整体上的解决方案步骤,而无需给出明确的优化步骤。本文提出了一种不断发展的迭代收缩阈值算法(ISTA)灵感的网络,用于可解释的图像SR。具体而言,我们分析了图像SR的问题,并根据ISTA方法提出了解决方案。受数学分析的启发,ISTA块的开发是以端到端的方式进行优化的。为了使探索更有效,设计了多尺度的开发块和多尺度注意机制来构建ISTA块。实验结果表明,与其他优化启发的作品相比,所提出的ISTA启发的恢复网络(ISTAR)具有竞争性或更好的性能,具有较少的参数且计算复杂性较低。
Deep learning for image super-resolution (SR) has been investigated by numerous researchers in recent years. Most of the works concentrate on effective block designs and improve the network representation but lack interpretation. There are also iterative optimization-inspired networks for image SR, which take the solution step as a whole without giving an explicit optimization step. This paper proposes an unfolding iterative shrinkage thresholding algorithm (ISTA) inspired network for interpretable image SR. Specifically, we analyze the problem of image SR and propose a solution based on the ISTA method. Inspired by the mathematical analysis, the ISTA block is developed to conduct the optimization in an end-to-end manner. To make the exploration more effective, a multi-scale exploitation block and multi-scale attention mechanism are devised to build the ISTA block. Experimental results show the proposed ISTA-inspired restoration network (ISTAR) achieves competitive or better performances than other optimization-inspired works with fewer parameters and lower computation complexity.