论文标题

控制,机密和被遗忘的权利

Control, Confidentiality, and the Right to be Forgotten

论文作者

Cohen, Aloni, Smith, Adam, Swanberg, Marika, Vasudevan, Prashant Nalini

论文摘要

最近的数字权利框架赋予用户从存储和处理其个人信息的系统中删除其数据的权利(例如,GDPR中的“被遗忘的权利”)。如何在与许多用户交互和商店衍生信息交互的复杂系统中进行形式化删除?我们认为先前的方法不足。机器Unrearning CAO和Yang [2015]的定义太狭窄了,不适用于一般的互动设置。删除的自然方法是confidentiality garg et al。 [2020]太限制了:通过要求删除的数据保密,它排除了社会功能。我们提出了一种新的形式主义:删除 - 控制。它允许用户的数据在删除之前自由使用,同时还可以在删除后施加有意义的要求 - 从而为用户提供更多的控制。删除-As-Control提供了在不同环境中删除删除的新方法。我们将其应用于社会功能,并对文献中各种机器的定义进行新的统一视图。这是通过对历史独立性的新自适应概括来完成的。 DELETION-AS-CONTROL还提供了一种新的方法来实现机器学习目标,即在尊重用户的删除请求的同时维护模型。我们表明,发布一系列更新模型的顺序在持续发布下是私人私有的,可以满足删除为控制。这种算法的准确性不取决于已删除点的数量,与机器学习文献相比。

Recent digital rights frameworks give users the right to delete their data from systems that store and process their personal information (e.g., the "right to be forgotten" in the GDPR). How should deletion be formalized in complex systems that interact with many users and store derivative information? We argue that prior approaches fall short. Definitions of machine unlearning Cao and Yang [2015] are too narrowly scoped and do not apply to general interactive settings. The natural approach of deletion-as-confidentiality Garg et al. [2020] is too restrictive: by requiring secrecy of deleted data, it rules out social functionalities. We propose a new formalism: deletion-as-control. It allows users' data to be freely used before deletion, while also imposing a meaningful requirement after deletion--thereby giving users more control. Deletion-as-control provides new ways of achieving deletion in diverse settings. We apply it to social functionalities, and give a new unified view of various machine unlearning definitions from the literature. This is done by way of a new adaptive generalization of history independence. Deletion-as-control also provides a new approach to the goal of machine unlearning, that is, to maintaining a model while honoring users' deletion requests. We show that publishing a sequence of updated models that are differentially private under continual release satisfies deletion-as-control. The accuracy of such an algorithm does not depend on the number of deleted points, in contrast to the machine unlearning literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源