论文标题

将概念地质信息引入贝叶斯层析成像中

Introducing Conceptual Geological Information into Bayesian Tomographic Imaging

论文作者

Bloem, Hugo, Curtis, Andrew, Tetzlaff, Daniel

论文摘要

地质过程模型模拟了一系列动态过程,以将基本地形发展为最终的2D横截面或3D地质场景。原则上,可以更新过程参数以更好地与观察到的地球物理或地质数据保持一致。但是,体现不同概念模型的过程模型的许多实现可能会与观察到的数据提供相似的一致性,并且由于任务的计算需求,找到所有这些实现可能是不可行的。另外,可以使用地球物理概率层析成像方法来估计目标地下结构的模型家族,这些模型与从先前的实验和新数据(贝叶斯后分布)中获得的信息保持一致。但是,这个家庭很少体现地质合理的图像。我们表明,可以通过将地质先验信息注入贝叶斯推论来增强断层图像的后验分布,并且我们可以通过训练有素的MDN几乎不变地做到这一点。我们将两个地质概念作为地质先验信息援引:一个编织的河流系统和一组海洋码头,每个杂志都由gan参数。然后,来自目标结构的数据可用于使用MDN使用任何一种地质概念来推断图像参数值。我们的MDN解决方案非常类似于使用昂贵的MCMC方法发现的解决方案,尽管使用不正确的地质概念模型提供了较少准确的结果,但平均结构仍然近似目标。然后,我们证明分类网络可以推断正确的地质概念模型。因此,与没有地质事先信息获得的地质层析成像相比,甚至不正确的地质事先信息可能会改善地球物理层析成像图像,并且原则上可以直接从地球物理旅行时间数据中推断出地质概念模型。

Geological process models simulate a range of dynamic processes to evolve a base topography into a final 2D cross-section or 3D geological scenario. In principle, process parameters may be updated to better align with observed geophysical or geological data; however, many realisations of process models that embody different conceptual models may provide similar consistency with observed data, and finding all such realisations may be infeasible due to the computational demands of the task. Alternatively, geophysical probabilistic tomographic methods may be used to estimate the family of models of a target subsurface structure that are consistent both with information obtained from previous experiments and with new data (the Bayesian posterior distribution). However, this family seldom embodies geologically reasonable images. We show that the posterior distribution of tomographic images can be enhanced by injecting geological prior information into Bayesian inference, and we can do this near-instantaneously by trained MDNs. We invoke two geological concepts as geological prior information: a braided river system, and a set of marine parasequences, each parameterised by a GAN. Data from a target structure can then be used to infer the image parameter values using either geological concept using MDNs. Our MDN solutions closely resemble those found using expensive McMC methods, and while the use of incorrect geological conceptual models provides less accurate results the mean structures still approximate the target. We then show that a classification network can infer the correct geological conceptual model. Thus, imposing even incorrect geological prior information may improve geophysical tomographic images compared to those obtained without geological prior information, and in principle geological conceptual models can be inferred directly from geophysical travel time data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源