论文标题
基于机器学习算法的类风湿关节炎患者的药物有效性的预测
Prediction of drug effectiveness in rheumatoid arthritis patients based on machine learning algorithms
论文作者
论文摘要
类风湿关节炎(RA)是当患者的免疫系统错误地针对自己的组织时引起的自身免疫性。机器学习(ML)有可能识别患者电子健康记录(EHR)中的模式,以预测最佳的临床治疗方法,以改善患者的预后。这项研究介绍了具有两个主要目标的药物反应预测(DRP)框架:1)设计数据处理管道,以从表格临床数据中提取信息,然后在功能上进行预处理,以及2)预测RA患者对药物的反应并评估分类模型的性能。我们提出了一个新型的两阶段ML框架,该框架基于欧洲风湿病学联盟(EULAR)标准截断,以模拟药物有效性。使用来自425名RA患者的数据开发并进行了交叉验证,我们的模型堆叠了DRP。该评估从相同的数据来源使用了124名患者(30%)的子集。在对测试集的评估中,两个阶段的DRP可提高分类的精度,而不是二进制分类的其他端到端分类模型。我们提出的方法提供了完整的管道来预测疾病活动评分并确定对抗TNF治疗反应不佳的群体,从而显示了基于EHR信息支持临床决策的希望。
Rheumatoid arthritis (RA) is an autoimmune condition caused when patients' immune system mistakenly targets their own tissue. Machine learning (ML) has the potential to identify patterns in patient electronic health records (EHR) to forecast the best clinical treatment to improve patient outcomes. This study introduced a Drug Response Prediction (DRP) framework with two main goals: 1) design a data processing pipeline to extract information from tabular clinical data, and then preprocess it for functional use, and 2) predict RA patient's responses to drugs and evaluate classification models' performance. We propose a novel two-stage ML framework based on European Alliance of Associations for Rheumatology (EULAR) criteria cutoffs to model drug effectiveness. Our model Stacked-Ensemble DRP was developed and cross-validated using data from 425 RA patients. The evaluation used a subset of 124 patients (30%) from the same data source. In the evaluation of the test set, two-stage DRP leads to improved classification accuracy over other end-to-end classification models for binary classification. Our proposed method provides a complete pipeline to predict disease activity scores and identify the group that does not respond well to anti-TNF treatments, thus showing promise in supporting clinical decisions based on EHR information.