论文标题

在随机环境中移民的分支随机步行的中央限制定理和浆果 - 贝里界的界限

Central limit theorem and Berry-Esseen bounds for a branching random walk with immigration in a random environment

论文作者

Huang, Chunmao, Ren, Yukun, Li, Runze

论文摘要

我们考虑在$ d $维的真实空间上进行分支随机步行,并在时间依赖的随机环境中移民。令$ z_n(\ mathbf t)$为该过程的所谓分区功能,即,在描述了时间$ n $的计数量度的时刻生成计数措施的函数。对于$ \ mathbf t $固定的,对数$ \ log z_n(\ mathbf t)$满足中心限制定理。通过研究系统的内在字体及其收敛速率的对数力矩,我们建立了与中心极限定理相对应的均匀和非均匀的浆果 - 贝里 - 埃斯式界限,并发现中心极限定理中的确切收敛速率。

We consider a branching random walk on $d$-dimensional real space with immigration in a time-dependent random environment. Let $Z_n(\mathbf t)$ be the so-called partition function of the process, namely, the moment generating function of the counting measure describing the dispersion of individuals at time $n$. For $\mathbf t$ fixed, the logarithm $\log Z_n(\mathbf t)$ satisfies a central limit theorem. By studying the logarithmic moments of the intrinsic submartingale of the system and its convergence rates, we establish the uniform and non-uniform Berry-Esseen bounds corresponding to the central limit theorem, and discover the exact convergence rate in the central limit theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源