论文标题

通过“团队游戏”重新考虑轨迹预测

Rethinking Trajectory Prediction via "Team Game"

论文作者

Wei, Zikai, Zhu, Xinge, Dai, Bo, Lin, Dahua

论文摘要

为了准确预测多代理设置中的轨迹,例如团队游戏,有效地对代理之间的互动进行建模很重要。尽管为此目的开发了许多方法,但现有方法将这些交互作用暗中建模为深网架构的一部分。但是,在现实世界中,相互作用通常存在于多个层面,例如个体可能会形成群体,在群体之间以及同一组中的个体之间的相互作用通常遵循明显不同的模式。在本文中,我们提出了一种用于多机构轨迹预测的新颖配方,该公式通过交互式分层潜在空间明确地介绍了交互式群体共识的概念。该公式可以共同捕获组级别和个体级别的相互作用,从而实质上提高了建模复杂动力学的能力。在两个多代理设置(即团队运动和行人)上,与现有方法相比,拟议的框架始终取得了卓越的性能。

To accurately predict trajectories in multi-agent settings, e.g. team games, it is important to effectively model the interactions among agents. Whereas a number of methods have been developed for this purpose, existing methods implicitly model these interactions as part of the deep net architecture. However, in the real world, interactions often exist at multiple levels, e.g. individuals may form groups, where interactions among groups and those among the individuals in the same group often follow significantly different patterns. In this paper, we present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus via an interactive hierarchical latent space. This formulation allows group-level and individual-level interactions to be captured jointly, thus substantially improving the capability of modeling complex dynamics. On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源