论文标题

部分可观测时空混沌系统的无模型预测

Symmetries of Calabi-Yau Prepotentials with Isomorphic Flops

论文作者

Lukas, Andre, Ruehle, Fabian

论文摘要

卡拉比(Calabi-Yau)的三倍,无限无限地拖缺失了同构歧管,其延长的kahler锥由无限数量的单个kahler锥体组成。这些锥由触发壁之间的反射对称性相关。我们通过考虑Calabi-yau三倍的前态的intanton部分来研究这种锥体对镜像对称性的含义。我们表明,跨卡勒锥边界方面的这种同构拖船会引起对称群的同构对Coxeter组。在双重锥体中,这些组下在这些组中鉴定出的非浮动曲线类具有相同的gopakumar-vafa不变性。这导致在Coxeter组下导致Instanton的预势不变,我们通过引入适当的不变函数来体现出来。在某些情况下,这些函数可以用theta函数表示,其外观可以与卡拉比(Calabi-Yau)歧管的椭圆纤维结构相关。

Calabi-Yau threefolds with infinitely many flops to isomorphic manifolds have an extended Kahler cone made up from an infinite number of individual Kahler cones. These cones are related by reflection symmetries across flop walls. We study the implications of this cone structure for mirror symmetry, by considering the instanton part of the prepotential in Calabi-Yau threefolds. We show that such isomorphic flops across facets of the Kahler cone boundary give rise to symmetry groups isomorphic to Coxeter groups. In the dual Mori cone, non-flopping curve classes that are identified under these groups have the same Gopakumar-Vafa invariants. This leads to instanton prepotentials invariant under Coxeter groups, which we make manifest by introducing appropriate invariant functions. For some cases, these functions can be expressed in terms of theta functions whose appearance can be linked to an elliptic fibration structure of the Calabi-Yau manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源