论文标题

对线性时间不变系统的近似随机控制,具有重尾干扰

Approximate Stochastic Optimal Control for Linear Time Invariant Systems with Heavy-tailed Disturbances

论文作者

Priore, Shawn, Petersen, Christopher, Oishi, Meeko

论文摘要

我们为线性时间不变的系统提出了一个开放循环控制方案,该系统通过使用分位数重新制定而受到多变量$ t $干扰的干扰。多元$ t $干扰是由较重的尾部现象激发的,这些现象是通过未模块化的扰动力,线性化效果或有缺陷的执行器来进行多车计划计划问题的。我们的方法依赖于凸的多功能目标集和基于规范的碰撞避免限制的凸数量重新构造来实现快速计算。我们将学生的$ T $分布和Beta Pripe分布的分位数近似嵌入到通气差函数框架中,以计算可证明但可能的次优控制器。我们用三个卫星会合示例演示了我们的方法,并提供了与颗粒控制的比较。

We propose an open loop control scheme for linear time invariant systems perturbed by multivariate $t$ disturbances through the use of quantile reformulations. The multivariate $t$ disturbance is motivated by heavy tailed phenomena that arise in multi-vehicle planning planning problems through unmodeled perturbation forces, linearization effects, or faulty actuators. Our approach relies on convex quantile reformulations of the polytopic target sets and norm based collision avoidance constraints to enable fast computation. We embed quantile approximations of the Student's $t$ distribution and the beta prime distribution in a difference-of-convex function framework to compute provably safe but likely suboptimal controllers. We demonstrate our method with three satellite rendezvous examples and provide a comparison with particle control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源