论文标题

在功能上$ sx $的添加剂补充

On function $SX$ of additive complements

论文作者

Fang, Jin-Hui, Sándor, Csaba

论文摘要

如果所有足够大的整数都可以表示为$ a $ a $ a和$ b $的两个元素的总和,则两个非负整数的$ a,b $称为\ emph {addive requements}。如果每个非负整数都可以唯一表示为$ a $ a $ a和$ b $的两个元素的总和,我们将进一步称为$ a,b $ \ emph {perfect添加剂}。令$ a(x)$为$ a $的计数函数。在本文中,我们关注函数$ sx $,其中$ sx = \ limsup_ {x \ rightArrow \ infty \ infty} \ frac {\ max \ {a(x),b(x)\}} {\ sqrt {x}} $由Erdős和Freeud crompots $ cromin crombote conderive a $ condive of a $ subrose a $。并进一步固定量。我们还为添加剂补充提供了$ SX $的绝对下限。

Two sets $A,B$ of nonnegative integers are called \emph{additive complements}, if all sufficiently large integers can be expressed as the sum of two elements from $A$ and $B$. We further call $A,B$ \emph{perfect additive complements} if every nonnegative integer can be uniquely expressed as the sum of two elements from $A$ and $B$. Let $A(x)$ be the counting function of $A$. In this paper, we focus on the function $SX$, where $SX=\limsup_{x\rightarrow\infty}\frac{\max\{A(x),B(x)\}}{\sqrt{x}}$ was introduced by Erdős and Freud in 1984. As a main result, we determine the value of $SX$ for perfect additive complements and further fix the infimum. We also give the absolute lower bound of $SX$ for additive complements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源