论文标题
随机Weierstrass zeta函数I.存在,独特性,波动
The random Weierstrass zeta function I. Existence, uniqueness, fluctuations
论文作者
论文摘要
我们描述了在给定的固定点过程中带有单位残基的规定的简单杆的随机杂形函数的构造。我们用有限的第二刻度表征那些固定过程,在减去均值后,随机函数变为静止。这些随机的杂形函数可以看作是椭圆函数理论的Weierstrass Zeta函数的随机类似物,也可以将其等效地视为由点电荷的无限随机分布产生的电场。
We describe a construction of random meromorphic functions with prescribed simple poles with unit residues at a given stationary point process. We characterize those stationary processes with finite second moment for which, after subtracting the mean, the random function becomes stationary. These random meromorphic functions can be viewed as random analogues of the Weierstrass zeta function from the theory of elliptic functions, or equivalently as electric fields generated by an infinite random distribution of point charges.