论文标题
部分可观测时空混沌系统的无模型预测
LaMAR: Benchmarking Localization and Mapping for Augmented Reality
论文作者
论文摘要
本地化和映射是增强现实(AR)的基础技术,它可以在现实世界中共享和持久性数字内容。尽管已经取得了重大进展,但研究人员仍然主要由不现实的基准驱动,而不是代表现实世界中的AR场景。这些基准通常是基于场景多样性低的小规模数据集,从固定摄像机捕获,并且缺乏其他传感器输入(例如惯性,无线电或深度数据)。此外,它们的基础(GT)精度主要不足以满足AR要求。为了缩小这一差距,我们介绍了Lamar,这是一种新的基准测试,并具有全面的捕获和GT管道,在大型,无约束的场景中,由异质AR设备捕获的现实轨迹和传感器流。为了建立准确的GT,我们的管道以完全自动化的方式将轨迹与激光扫描保持一致。结果,我们发布了一个带有头部安装和手持AR设备的不同场景和大规模场景的基准数据集。我们扩展了几种最先进的方法来利用特定于AR的设置,并在我们的基准上进行评估。结果为当前研究提供了新的见解,并揭示了在本地化和AR映射领域的未来工作的有希望的途径。
Localization and mapping is the foundational technology for augmented reality (AR) that enables sharing and persistence of digital content in the real world. While significant progress has been made, researchers are still mostly driven by unrealistic benchmarks not representative of real-world AR scenarios. These benchmarks are often based on small-scale datasets with low scene diversity, captured from stationary cameras, and lack other sensor inputs like inertial, radio, or depth data. Furthermore, their ground-truth (GT) accuracy is mostly insufficient to satisfy AR requirements. To close this gap, we introduce LaMAR, a new benchmark with a comprehensive capture and GT pipeline that co-registers realistic trajectories and sensor streams captured by heterogeneous AR devices in large, unconstrained scenes. To establish an accurate GT, our pipeline robustly aligns the trajectories against laser scans in a fully automated manner. As a result, we publish a benchmark dataset of diverse and large-scale scenes recorded with head-mounted and hand-held AR devices. We extend several state-of-the-art methods to take advantage of the AR-specific setup and evaluate them on our benchmark. The results offer new insights on current research and reveal promising avenues for future work in the field of localization and mapping for AR.