论文标题
边缘不被单色二分图覆盖
Edges not covered by monochromatic bipartite graphs
论文作者
论文摘要
令$ f_k(n,h)$表示任何单色副本中未包含的最大边数〜$ h $ in $ k $ - $ k_n $的边缘颜色,然后让$ ex(n,h)$表示turán的$ h $。代替$ f_2(n,h)$,我们只是写$ f(n,h)$。 Keevash和Sudakov证明了$ f(n,h)= ex(n,h)$,如果$ h $是边缘临界图或$ C_4 $,并询问此相等性是否适用于任何图$ h $。该问题的所有已知确切值都需要$ h $才能包含至少一个周期。在本文中,我们专注于无环图,并具有以下结果: (1)当$ h $是蜘蛛或双扫帚时,我们证明$ f(n,h)= ex(n,h)$。 (2)$ h $中的a \ emph {tail}是一条路径$ p_3 = v_0v_1v_2 $,这样$ v_2 $仅与$ v_1 $相邻,而$ v_1 $仅与$ v_0相邻,$ v_2 $ h $中的v_2 $。当$ h $是带有尾巴的两部分图时,我们会获得$ f(n,h)$的紧密上限。该结果提供了第一个两部分图,这些图在负面回答了Keevash和Sudakov的问题。 (3)Liu,Pikhurko和Sharifzadeh询问$ f_k(n,t)=(k-1)ex(n,t)$时,$ t $是一棵树。我们为$ f_ {2k}(n,p_ {2k})$提供了一个上限,并在$ 2K-1 $是PRIME时表明它很紧。这为他们的问题提供了负面答案。
Let $f_k(n,H)$ denote the maximum number of edges not contained in any monochromatic copy of~$H$ in a $k$-coloring of the edges of $K_n$, and let $ex(n,H)$ denote the Turán number of $H$. In place of $f_2(n,H)$ we simply write $f(n,H)$. Keevash and Sudakov proved that $f(n,H)=ex(n,H)$ if $H$ is an edge-critical graph or $C_4$ and asked if this equality holds for any graph $H$. All known exact values of this question require $H$ to contain at least one cycle. In this paper we focus on acyclic graphs and have the following results: (1) We prove $f(n,H)=ex(n,H)$ when $H$ is a spider or a double broom. (2) A \emph{tail} in $H$ is a path $P_3=v_0v_1v_2$ such that $v_2$ is only adjacent to $v_1$ and $v_1$ is only adjacent to $v_0,v_2$ in $H$. We obtain a tight upper bound for $f(n,H)$ when $H$ is a bipartite graph with a tail. This result provides the first bipartite graphs which answer the question of Keevash and Sudakov in the negative. (3) Liu, Pikhurko and Sharifzadeh asked if $f_k(n,T)=(k-1)ex(n,T)$ when $T$ is a tree. We provide an upper bound for $f_{2k}(n,P_{2k})$ and show it is tight when $2k-1$ is prime. This provides a negative answer to their question.