论文标题

在非IID场景中分析分散的水平和垂直联合学习体系结构的鲁棒性

Analyzing the Robustness of Decentralized Horizontal and Vertical Federated Learning Architectures in a Non-IID Scenario

论文作者

Sánchez, Pedro Miguel Sánchez, Celdrán, Alberto Huertas, Beltrán, Enrique Tomás Martínez, Demeter, Daniel, Bovet, Gérôme, Pérez, Gregorio Martínez, Stiller, Burkhard

论文摘要

联合学习(FL)允许参与者在保护数据隐私的同时协作训练机器和深度学习模型。但是,由于恶意参与者可以针对训练过程发起对抗性攻击,因此FL范式仍然存在影响其可信赖性的缺点。相关工作研究了在不同攻击下水平FL场景的鲁棒性。但是,缺乏工作来评估分散垂直FL的鲁棒性,并将其与受对抗攻击影响的水平FL结构进行比较。因此,这项工作提出了三个分散的FL体系结构,一个用于水平,两个用于垂直方案,即Horichain,Vertichain和Verticomb。这些体系结构呈现出适合水平和垂直方案的不同神经网络和培训方案。然后,部署了一个分散的,保护隐私的和联合的用例,用于对手写数字进行分类,以评估这三个体系结构的性能。最后,一组实验会根据图像水印和梯度中毒对抗性攻击受到不同数据中毒的影响,计算并比较提出的体系结构的鲁棒性。实验表明,即使两种攻击的特定配置都可以破坏体系结构的分类性能,但Horichain是最强大的。

Federated learning (FL) allows participants to collaboratively train machine and deep learning models while protecting data privacy. However, the FL paradigm still presents drawbacks affecting its trustworthiness since malicious participants could launch adversarial attacks against the training process. Related work has studied the robustness of horizontal FL scenarios under different attacks. However, there is a lack of work evaluating the robustness of decentralized vertical FL and comparing it with horizontal FL architectures affected by adversarial attacks. Thus, this work proposes three decentralized FL architectures, one for horizontal and two for vertical scenarios, namely HoriChain, VertiChain, and VertiComb. These architectures present different neural networks and training protocols suitable for horizontal and vertical scenarios. Then, a decentralized, privacy-preserving, and federated use case with non-IID data to classify handwritten digits is deployed to evaluate the performance of the three architectures. Finally, a set of experiments computes and compares the robustness of the proposed architectures when they are affected by different data poisoning based on image watermarks and gradient poisoning adversarial attacks. The experiments show that even though particular configurations of both attacks can destroy the classification performance of the architectures, HoriChain is the most robust one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源