论文标题
QED图中的Lepton异常在Mellin-Barnes表示内带有真空极化插入
Lepton anomaly from QED diagrams with vacuum polarization insertions within the Mellin-Barnes representation
论文作者
论文摘要
对特定类别的QED图产生的Lepton $ L $($ L = E \,μ$或$τ$)的异常磁矩的贡献进行了分析评估,直到电磁偶联常数的第八阶。 Feynman图的考虑类别涉及真空极化插入Lepton $ L $的电磁顶点,最高三个封闭的Lepton环。相应的分析表达式作为质量比的函数$ r = m_l/m_l $在整个区域中$ 0 <r <\ infty $。我们的考虑是基于对极化算子的分散关系的联合使用以及Feynman参数积分的Mellin-Barnes积分转换。该方法在相对论量子场理论中的多环计算中广泛使用。对于辐射校正的每个顺序,我们将分析表达式作为$ r $的函数得出,分别为$ r <1 $和$ r> 1 $。我们认为,尽管在这些间隔中获得了明确表达式,但乍一看,它们代表了相同分析函数的两个分支。因此,对于每个更正阶,在(0,\ infty)$的〜$ r \ in的整个范围内定义了一个唯一的分析函数。 $ 4th $,$ 6th $和$ 8th $的数值计算结果的订单校正对Leptons($ L = E,μ,τ$)的异常磁矩进行更正,并以所有可能的真空极化插入表示为$ r = m_l/m_l/m_l $的功能。每当相关时,我们都会比较我们的分析表达式和相应的渐近扩展与文献中可获得的结果。
The contributions to the anomalous magnetic moment of the lepton $L$ ($L=e\ , μ$ or $τ$) generated by a specific class of QED diagrams are evaluated analytically up to the eighth order of the electromagnetic coupling constant. The considered class of the Feynman diagrams involves the vacuum polarization insertions into the electromagnetic vertex of the lepton $L$ up to three closed lepton loops. The corresponding analytical expressions are obtained as functions of the mass ratios $r=m_l/m_L$ in the whole region $0 < r < \infty$. Our consideration is based on a combined use of the dispersion relations for the polarization operators and the Mellin-Barnes integral transform for the Feynman parametric integrals. This method is widely used in the literature in multi-loop calculations in relativistic quantum field theories. For each order of the radiative correction, we derive analytical expressions as functions of $r$, separately at $r<1$ and $r>1$. We argue that in spite of the obtained explicit expressions in these intervals which are quite different, at first glance, they represent two branches of the same analytical function. Consequently, for each order of corrections there is a unique analytical function defined in the whole range of~$r\in (0,\infty)$. The results of numerical calculations of the $4th$, $6th$ and $8th$ order corrections to the anomalous magnetic moments of leptons ($L=e ,μ, τ$) with all possible vacuum polarization insertions are represented as functions of the ratio $r=m_l/m_L$. Whenever pertinent, we compare our analytical expressions and the corresponding asymptotic expansions with the known results available in the literature.