论文标题
高温约瑟夫森二极管
High-temperature Josephson diode
论文作者
论文摘要
对称性在确定材料的各种特性中起关键作用。半导体P-N结二极管体现了工程偏斜的电子响应,是当代电子电路的核心。二极管中的非转录电荷转运是掺杂引起的反转对称性的破坏。除了某些超导系统中的反转对称性外,时间逆转的破坏还导致类似的设备 - 超导二极管。在超导二极管效应(SDE)的开创性首次演示之后,已经报道了大量显示相似效应的新系统。 SDE奠定了实现超低耗散电路的基础,而约瑟夫森现象基于现象的二极管效应(JDE)可以实现受保护的Qubits。但是,到目前为止,SDE和JDE报道的是低温($ \ sim $ 4 K或更低),并阻碍了他们对技术应用的适应性。在这里,我们证明了使用人工约瑟夫森(Josephson)交界处的约瑟夫森二极管(Josephson)二极管,该二极管使用Bi $ _2 $ _2 $ sr $ _2 $ _2 $ cacu $ _2 $ _2 $ o $ $ _ {8+δ} $(BSCCO)的人工约瑟夫森连接(AJJ)。非转录反应在开关电流及其分布的大小中表现为不对称性,并且出现在所有扭曲角度。不对称诱导并可以调节,并具有垂直于连接的非常小的磁场。我们报告20 K时的记录不对称性为60%。我们在基于涡旋的情况下解释了我们的结果。我们的结果为在液氮温度下实现超导量子电路提供了途径。
Symmetry plays a critical role in determining various properties of a material. Semiconducting p-n junction diode exemplifies the engineered skew electronic response and is at the heart of contemporary electronic circuits. The non-reciprocal charge transport in a diode arises from doping-induced breaking of inversion symmetry. Breaking of time-reversal, in addition to inversion symmetry in some superconducting systems, leads to an analogous device - the superconducting diode. Following the pioneering first demonstration of the superconducting diode effect (SDE), a plethora of new systems showing similar effects have been reported. SDE lays the foundation for realizing ultra-low dissipative circuits, while Josephson phenomena-based diode effect (JDE) can enable realization of protected qubits. However, SDE and JDE reported thus far are at low temperatures ($\sim$ 4 K or lower) and impede their adaptation to technological applications. Here we demonstrate a Josephson diode working up to 77 K using an artificial Josephson junction (AJJ) of twisted layers of Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ (BSCCO). The non-reciprocal response manifests as an asymmetry in the magnitude of switching currents and their distributions and appears for all twist angles. The asymmetry is induced by and tunable with a very small magnetic field applied perpendicular to the junction. We report a record asymmetry of 60 % at 20 K. We explain our results within a vortex-based scenario. Our results provide a path toward realizing superconducting quantum circuits at liquid nitrogen temperature.