论文标题

通过使用合成数据对CNN进行微调,改善GPR图像中的异常检测

Improving the Anomaly Detection in GPR Images by Fine-Tuning CNNs with Synthetic Data

论文作者

Zhou, Xiren, Liu, Shikang, Chen, Ao, Fan, Yizhan, Chen, Huanhuan

论文摘要

地面穿透性雷达(GPR)已被广泛用于估计某些城市道路和地下设施的健康运作。当识别GPR在某个区域中的地下异常时,所获得的数据可能是不平衡的,并且可能无法预先确认可能的地下异常的数量和类型。在本文中,提出了一种新的方法来改善从GPR B扫描图像中的地下异常检测。首先在检测区域收集了一个普通的(即没有地下对象)GPR图像部分。同意GPR图像本质上是电磁(EM)波和传播时间的表示,并且为了保留地下背景和对象的细节,正常的GPR图像被分段,然后与模拟的GPR图像融合,这些图像与包含不同类型的对象的模拟GPR图像融合在一起,以生成基于波浪deconsostorcorsss的检测区域的合成数据。然后可以通过合成数据对预训练的CNN进行微调,并用于提取随后在检测区域获得的分段GPR图像的特征。提取的功能可以通过特征空间中的单级学习算法进行分类,而无需预集异常类型或数字。进行的实验表明,使用建议的合成数据对预训练的CNN进行微调可以有效地改善检测区域中对象的网络的特征提取。此外,提出的方法仅需要一部分正常数据,这些数据可以在检测区域轻松获得,并且还可以满足实际应用中的及时性要求。

Ground Penetrating Radar (GPR) has been widely used to estimate the healthy operation of some urban roads and underground facilities. When identifying subsurface anomalies by GPR in an area, the obtained data could be unbalanced, and the numbers and types of possible underground anomalies could not be acknowledged in advance. In this paper, a novel method is proposed to improve the subsurface anomaly detection from GPR B-scan images. A normal (i.e. without subsurface objects) GPR image section is firstly collected in the detected area. Concerning that the GPR image is essentially the representation of electromagnetic (EM) wave and propagation time, and to preserve both the subsurface background and objects' details, the normal GPR image is segmented and then fused with simulated GPR images that contain different kinds of objects to generate the synthetic data for the detection area based on the wavelet decompositions. Pre-trained CNNs could then be fine-tuned with the synthetic data, and utilized to extract features of segmented GPR images subsequently obtained in the detection area. The extracted features could be classified by the one-class learning algorithm in the feature space without pre-set anomaly types or numbers. The conducted experiments demonstrate that fine-tuning the pre-trained CNN with the proposed synthetic data could effectively improve the feature extraction of the network for the objects in the detection area. Besides, the proposed method requires only a section of normal data that could be easily obtained in the detection area, and could also meet the timeliness requirements in practical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源