论文标题
通过贝叶斯的磁感应测量方法揭示冰冷月亮的内部结构
Revealing the interior structure of icy moons with a Bayesian approach to magnetic induction measurements
论文作者
论文摘要
据信太阳系中的一些冰冷的月亮和小物体可容纳地下液态水海洋。这些盐水,导电海与时变外部磁场的相互作用产生了诱导的磁场。对这些诱导场的磁力测定观察反过来又可以检测和表征这些海洋。我们提出了一个框架,用于使用多频感应和贝叶斯推理以及将即将到来的Europa Clipper任务预期的磁力测量测量的贝叶斯推理来表征冰卫月的内部。使用来自Europa Clipper磁力计(ECM)的模拟数据,我们的方法可以准确检索欧罗巴的多种合理的内部结构。特别是,对于所有考虑的内部结构方案,海洋电导率被恢复到$ {\ pm} 50 \%$之内,并且可以将海洋厚度检索到$ {\ pm} 25〜 \ mathrm {km} $中,五个场景中的五个场景中的五个场景中的五个场景。对于七个场景中的六个,可以将冰壳厚度的特征表征到$ {\ pm} 50 \%$。我们的冰壳厚度的恢复高度取决于欧罗巴与环境磁层等离子体的相互作用产生的磁场的准确建模,而海洋厚度则更适度地影响,并且海洋电导率的检索在很大程度上没有变化。此外,我们发现与单独的磁力测定法相比,添加先验约束(例如,静态重力测量值)可以产生改善的海洋表征,这表明多功能技术技术可以在揭示欧洲和其他海洋世界的内部体系中发挥关键作用。
Some icy moons and small bodies in the solar system are believed to host subsurface liquid water oceans. The interaction of these saline, electrically conductive oceans with time-varying external magnetic fields generates induced magnetic fields. Magnetometry observations of these induced fields in turn enable the detection and characterization of these oceans. We present a framework for characterizing the interiors of icy moons using multi-frequency induction and Bayesian inference applied to magnetometry measurements anticipated from the upcoming Europa Clipper mission. Using simulated data from the Europa Clipper Magnetometer (ECM), our approach can accurately retrieve a wide range of plausible internal structures for Europa. In particular, the ocean conductivity is recovered to within ${\pm}50\%$ for all internal structure scenarios considered and the ocean thickness can be retrieved to within ${\pm}25~\mathrm{km}$ for five out of seven scenarios. Characterization of the ice shell thickness to ${\pm}50\%$ is possible for six of seven scenarios. Our recovery of the ice shell thickness is highly contingent on accurate modeling of magnetic fields arising from the interaction of Europa with the ambient magnetospheric plasma, while the ocean thickness is more modestly affected and the ocean conductivity retrieval is largely unchanged. Furthermore, we find that the addition of a priori constraints (e.g., static gravity measurements) can yield improved ocean characterization compared to magnetometry alone, suggesting that multi-instrument techniques can play a key role in revealing the interiors of Europa and other ocean worlds.