论文标题

自动认知2.0:通过自动化机器学习的医疗保健中的诊断和预后建模民主化

AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in Healthcare with Automated Machine Learning

论文作者

Imrie, Fergus, Cebere, Bogdan, McKinney, Eoin F., van der Schaar, Mihaela

论文摘要

诊断和预后模型在医学中越来越重要,并为许多临床决策提供了信息。最近,通过以数据驱动方式更好地捕获患者协变量之间的复杂相互作用,机器学习方法比传统建模技术进行了改善。但是,机器学习的使用引入了许多技术和实践挑战,这些挑战迄今已限制了在临床环境中广泛采用此类技术。为了应对这些挑战并赋予医疗保健专业人员的能力,我们提出了一个机器学习框架,自动认知2.0,以开发诊断和预后模型。自动化机器学习中的最先进的进展来开发优化的机器学习管道,结合模型的解释性工具,并可以部署临床演示者,而无需大量的技术专业知识。我们的框架消除了当前阻碍临床采用的机器学习的预测建模的主要技术障碍。为了证明自动认知2.0,我们提供了一种说明性应用,我们使用英国生物库为糖尿病的预后风险评分构建了502,467个人的前瞻性研究。我们自动化框架产生的模型比专家临床风险评分获得了更大的糖尿病歧视。我们的风险评分已被实施为基于网络的决策支持工具,可以由全球患者和临床医生公开访问。此外,Autoproplosis 2.0作为开源Python软件包提供。通过为社区的工具开放框架,临床医生和其他医生将能够使用现代机器学习技术轻松地开发新的风险评分,个性化诊断和预测。

Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces a number of technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators, without requiring significant technical expertise. Our framework eliminates the major technical obstacles to predictive modeling with machine learning that currently impede clinical adoption. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide. In addition, AutoPrognosis 2.0 is provided as an open-source python package. By open-sourcing our framework as a tool for the community, clinicians and other medical practitioners will be able to readily develop new risk scores, personalized diagnostics, and prognostics using modern machine learning techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源