论文标题

自动编码器神经网络与机器学习结合了X射线荧光基本参数

Auto-Encoder Neural Network Incorporating X-Ray Fluorescence Fundamental Parameters with Machine Learning

论文作者

Dirks, Matthew, Poole, David

论文摘要

我们考虑能量分散性X射线荧光(EDXRF)应用,其中基本参数方法是不切实际的,例如仪器参数不可用时。例如,在采矿铲或传送带上,岩石在不断移动(导致变化的入射角和距离各不相同),并且可能没有其他因素不考虑(例如灰尘)。神经网络不需要仪器和基本参数,但是训练神经网络需要用元素组成标记的XRF光谱,这通常是由于其费用而受到限制的。我们开发了一个神经网络模型,该模型从有限的标记数据中学习,并通过学习颠倒模型从领域知识中受益。向前模型使用所有元素的过渡能和概率以及参数化分布来近似其他基本和仪器参数。我们从锂矿物勘探项目的岩石数据集上评估了模型和基线模型。我们的模型对于某些低Z元素(LI,MG,AL和K)以及某些高Z元素(SN和PB)特别有效,尽管这些元素超出了可直接测量的合适范围,这可能是由于神经网络学习相关性和非线性关系的能力。

We consider energy-dispersive X-ray Fluorescence (EDXRF) applications where the fundamental parameters method is impractical such as when instrument parameters are unavailable. For example, on a mining shovel or conveyor belt, rocks are constantly moving (leading to varying angles of incidence and distances) and there may be other factors not accounted for (like dust). Neural networks do not require instrument and fundamental parameters but training neural networks requires XRF spectra labelled with elemental composition, which is often limited because of its expense. We develop a neural network model that learns from limited labelled data and also benefits from domain knowledge by learning to invert a forward model. The forward model uses transition energies and probabilities of all elements and parameterized distributions to approximate other fundamental and instrument parameters. We evaluate the model and baseline models on a rock dataset from a lithium mineral exploration project. Our model works particularly well for some low-Z elements (Li, Mg, Al, and K) as well as some high-Z elements (Sn and Pb) despite these elements being outside the suitable range for common spectrometers to directly measure, likely owing to the ability of neural networks to learn correlations and non-linear relationships.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源