论文标题
部分可观测时空混沌系统的无模型预测
Scalable Measurement Error Mitigation via Iterative Bayesian Unfolding
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Measurement error mitigation (MEM) techniques are postprocessing strategies to counteract systematic read-out errors on quantum computers (QC). Currently used MEM strategies face a tradeoff: methods that scale well with the number of qubits return negative probabilities, while those that guarantee a valid probability distribution are not scalable. Here, we present a scheme that addresses both of these issues. In particular, we present a scalable implementation of iterative Bayesian unfolding, a standard mitigation technique used in high-energy physics experiments. We demonstrate our method by mitigating QC data from experimental preparation of Greenberger-Horne-Zeilinger (GHZ) states up to 127 qubits and implementation of the Bernstein-Vazirani algorithm on up to 26 qubits.