论文标题

部分可观测时空混沌系统的无模型预测

Bayesian Convolutional Deep Sets with Task-Dependent Stationary Prior

论文作者

Jung, Yohan, Park, Jinkyoo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Convolutional deep sets are the architecture of a deep neural network (DNN) that can model stationary stochastic process. This architecture uses the kernel smoother and the DNN to construct the translation equivariant functional representations, and thus reflects the inductive bias of the stationarity into DNN. However, since this architecture employs the kernel smoother known as the non-parametric model, it may produce ambiguous representations when the number of data points is not given sufficiently. To remedy this issue, we introduce Bayesian convolutional deep sets that construct the random translation equivariant functional representations with stationary prior. Furthermore, we present how to impose the task-dependent prior for each dataset because a wrongly imposed prior forms an even worse representation than that of the kernel smoother. We validate the proposed architecture and its training on various experiments with time-series and image datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源