论文标题

$ g_ {n}^{3} $的真实性,真实性投影和$ g_ {n}^{3} $的内核

Realisability of $G_{n}^{3}$, realisability projection, and kernel of the $G_{n}^{3}$-braid presentation

论文作者

Manturov, Vassily Olegovich

论文摘要

本文的目的是证明来自纯编织组的地图$ pb_ {n},n \ ge 4 $向组$ g_ {n}^{3} $组成的全部扭曲辫子及其指数组成。 证明由两个部分组成。涉及$ n = 4 $的第一部分依赖于具有自身兴趣的{\ em Realisasiention Provestion}的关键工具,说明两个{\ em emable} $ g_ {4}^{3}^{3} $ - 元素是等效的,那么它们是相等的。 第二部分(简单)在$ n $上使用感应。

The aim of this article is to prove that the kernel of the map from the pure braid group $PB_{n},n\ge 4$ to the group $G_{n}^{3}$ consists of full twist braids and their exponents. The proof consists of two parts. The first part which deals with $n=4$ relies on the crucial tool in this construction having its own interest is the {\em realisability projection} saying that if two {\em realisable} $G_{4}^{3}$-elements are equivalent then they are equivalent by a sequence of realisable ones. The second part (an easy one) uses induction on $n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源