论文标题
使用机器学习建模基于数字矫形器的住宅供应任务
Modelling Residential Supply Tasks Based on Digital Orthophotography Using Machine Learning
论文作者
论文摘要
为了达到气候目标,个人迁移率的电气至关重要。但是,由于高充电功率和同时性,电动车辆的网格整合对电气分配网络构成了挑战。为了研究研究中的这些挑战,需要对网络引用的供应任务进行建模。以前的研究工作利用了在空间中并不总是完整或足够颗粒状的数据。这就是为什么本文提出了一种方法,该方法允许基于正赶动物的住宅供应任务进行整体确定。为此,首先是从正赶动物身上确定的建筑物,然后对住宅建筑类型进行分类,最后确定每个建筑物的电力需求。在一个示例性的案例研究中,我们验证了提出的方法,并将结果与另一种供应任务方法进行了比较。结果表明,电力需求平均偏离了参考方法的结果9%。偏差主要源于所选住宅建筑类型的参数化。因此,所提出的方法能够与其他方法相似,但更详细。
In order to achieve the climate targets, electrification of individual mobility is essential. However, grid integration of electrical vehicles poses challenges for the electrical distribution network due to high charging power and simultaneity. To investigate these challenges in research studies, the network-referenced supply task needs to be modeled. Previous research work utilizes data that is not always complete or sufficiently granular in space. This is why this paper presents a methodology which allows a holistic determination of residential supply tasks based on orthophotos. To do this, buildings are first identified from orthophotos, then residential building types are classified, and finally the electricity demand of each building is determined. In an exemplary case study, we validate the presented methodology and compare the results with another supply task methodology. The results show that the electricity demand deviates from the results of a reference method by an average 9%. Deviations result mainly from the parameterization of the selected residential building types. Thus, the presented methodology is able to model supply tasks similarly as other methods but more granular.