论文标题
粘弹性分层板中的波浪衰减
Wave attenuation in viscoelastic hierarchical plates
论文作者
论文摘要
语音晶体(PC)是通过具有对比性质的材料的空间排列获得的周期结构,可以设计出有效地操纵机械波的材料。可以使用Mindlin-Reissner板理论对板结构进行建模,并已广泛用于分析PC的分散关系。尽管对PC的传播特性的分析可能足以容纳简单的弹性结构,但是如果PC包含粘弹性组件,则分析evanevencent波动行为将变得基本。另一个并发症是,具有层次配置的PC的单位单元格中日益复杂的材料分布可能会导致复杂的频带结构(即考虑繁殖和逃生的波)的计算,这是由于过多的计算工作而导致的。在这项工作中,我们提出了一种新的扩展平面波扩展公式,以使用Mindlin-Reissner板理论来计算具有任意材料分布的厚PC板的复杂带结构,该理论包含具有粘弹性行为的组成部分,其粘弹性由Kelvin-Voigt模型近似。我们应用了该方法来研究(i)具有软粘弹性夹杂物的硬弹性矩阵的周期性层次结构化板的evanevancencent行为,或者(ii)具有硬弹性包含物的软粘性矩阵。我们的结果表明,对于(i),分层顺序的增加会导致体重减轻,并具有相对保留的衰减特性,包括由于局部谐振模式引起的衰减峰,在粘度水平上升时衰减降低。对于(ii),改变层次结构的顺序意味着在不同的频率范围内开放频带差距,粘度水平的提高改善了整体衰减。
Phononic crystals (PCs) are periodic structures obtained by the spatial arrangement of materials with contrasting properties, which can be designed to efficiently manipulate mechanical waves. Plate structures can be modeled using the Mindlin-Reissner plate theory and have been extensively used to analyze the dispersion relations of PCs. Although the analysis of the propagating characteristics of PCs may be sufficient for simple elastic structures, analyzing the evanescent wave behavior becomes fundamental if the PC contains viscoelastic components. Another complication is that increasingly intricate material distributions in the unit cell of PCs with hierarchical configuration may render the calculation of the complex band structure (i.e., considering both propagating and evanescent waves) prohibitive due to excessive computational workload. In this work, we propose a new extended plane wave expansion formulation to compute the complex band structure of thick PC plates with arbitrary material distribution using the Mindlin-Reissner plate theory containing constituents with a viscoelastic behavior approximated by a Kelvin-Voigt model. We apply the method to investigate the evanescent behavior of periodic hierarchically structured plates for either (i) a hard purely elastic matrix with soft viscoelastic inclusions or (ii) a soft viscoelastic matrix with hard purely elastic inclusions. Our results show that for (i), an increase in the hierarchical order leads to a weight reduction with relatively preserved attenuation characteristics, including attenuation peaks due to locally resonant modes that present a decrease in attenuation upon increasing viscosity levels. For (ii), changing the hierarchical order implies in opening band gaps in distinct frequency ranges, with an overall attenuation improved by an increase in the viscosity levels.