论文标题
等级的单一单一单一单一单一单一单一单一单一单一单位系统,带有$(n+1)$奇异性
Unitary monodromies of rank two Fuchsian systems with $(n+1)$ singularities
论文作者
论文摘要
我们研究了Riemann Sphere上的$(n+1)$常规奇异性的两个紫红色系统的单个单位性,即,我们给出了足够且必要的条件,使单型组群体可以与一个特殊的Untary Group $ \ MATHRM $ \ MATHRM {su su}(s su}(p,p,p,p,p,q)共轭。当$ n \ ge 3 $时,不可减少单模的模量空间可以实现为$ \ mathbb {c}^m $中的仿射代数集,用于某些$ m \ in \ mathbb {n} $。在本文中,我们根据此仿射代数集给出了统一单层的特征和构建。统一单粒的签名也被分类。
We study the unitarity of monodromies of rank two Fuchsian systems of SL type with $(n+1)$ regular singularities on the Riemann sphere, namely, we give a sufficient and necessary condition for the monodromy group to be conjugate to a subgroup of a special unitary group $\mathrm{SU}(p,q)$. When $n\ge 3$, the moduli space of irreducible monodromies can be realized as an affine algebraic set in $\mathbb{C}^m$ for some $m \in \mathbb{N}$. In this paper, we give a characterization and construction of unitary monodromies in terms of this affine algebraic set. The signatures of unitary monodromies are also classified.