论文标题
环绕异常曲线时动态越过的糖给点:可编程的对称性多模具开关
Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch
论文作者
论文摘要
非热式系统的非平凡光谱特性会导致令人着迷的效果,而在Hermitian系统中没有任何对应的效果。例如,在两个模式光子系统中,通过在特殊点(EP)周围动态绕组可以实现受控的不对称模式开关。也就是说,该系统可以最终以其特征状态之一,无论其初始本本符号如何,或者可以通过仅控制绕组方向在两个状态之间切换两种状态。但是,对于具有高阶EPS或多个低阶EPS的多模系统,由于绝热性的崩溃,情况可能会更多地参与其中,并且可以阻止控制不对称模式切换的能力。在这里,我们证明,可以通过越来越多的曲线来克服这种困难。我们将四模式$ \ cal pt $ -Smmetric玻璃体系统作为实验实现这种多模交换的平台。我们的工作为非热式光子设置中的轻型操作提供了替代路线。
Nontrivial spectral properties of non-Hermitian systems can lead to intriguing effects with no counterparts in Hermitian systems. For instance, in a two-mode photonic system, by dynamically winding around an exceptional point (EP) a controlled asymmetric-symmetric mode switching can be realized. That is, the system can either end up in one of its eigenstates, regardless of the initial eigenmode, or it can switch between the two states on demand, by simply controlling the winding direction. However, for multimode systems with higher-order EPs or multiple low-order EPs, the situation can be more involved, and the ability to control asymmetric-symmetric mode switching can be impeded, due to the breakdown of adiabaticity. Here we demonstrate that this difficulty can be overcome by winding around exceptional curves by additionally crossing diabolic points. We consider a four-mode $\cal PT$-symmetric bosonic system as a platform for experimental realization of such a multimode switch. Our work provides alternative routes for light manipulations in non-Hermitian photonic setups.