论文标题
在马尔可夫游戏中使用欺骗来通过捕获环境来了解对抗行为
Using Deception in Markov Game to Understand Adversarial Behaviors through a Capture-The-Flag Environment
论文作者
论文摘要
确定对系统脆弱性的实际对抗性威胁一直是网络安全研究的长期挑战。为了确定防御者的最佳策略,基于游戏理论的决策模型已被广泛用于模拟现实世界中的攻击者犯罪者场景,同时考虑了辩护人的约束。在这项工作中,我们专注于理解人类攻击者的行为,以优化辩护人的策略。为了实现这一目标,我们将攻击者的竞选者建模为马尔可夫游戏,并搜索他们的贝叶斯Stackelberg平衡。我们验证了我们的建模方法,并使用捕获标准(CTF)设置报告我们的经验发现,并对具有不同技能级别的对手进行用户研究。我们的研究表明,应用级欺骗是针对有针对性攻击的最佳缓解策略 - 表现优于经典的网络防御动作,例如修补或阻止网络请求。当被困在嵌入式蜜罐环境中时,我们使用此结果进一步假设攻击者的行为,并详细分析了攻击者的行为。
Identifying the actual adversarial threat against a system vulnerability has been a long-standing challenge for cybersecurity research. To determine an optimal strategy for the defender, game-theoretic based decision models have been widely used to simulate the real-world attacker-defender scenarios while taking the defender's constraints into consideration. In this work, we focus on understanding human attacker behaviors in order to optimize the defender's strategy. To achieve this goal, we model attacker-defender engagements as Markov Games and search for their Bayesian Stackelberg Equilibrium. We validate our modeling approach and report our empirical findings using a Capture-The-Flag (CTF) setup, and we conduct user studies on adversaries with varying skill-levels. Our studies show that application-level deceptions are an optimal mitigation strategy against targeted attacks -- outperforming classic cyber-defensive maneuvers, such as patching or blocking network requests. We use this result to further hypothesize over the attacker's behaviors when trapped in an embedded honeypot environment and present a detailed analysis of the same.