论文标题

个性化的对话生成,具有人格自适应的关注

Personalized Dialogue Generation with Persona-Adaptive Attention

论文作者

Huang, Qiushi, Zhang, Yu, Ko, Tom, Liu, Xubo, Wu, Bo, Wang, Wenwu, Tang, Lilian

论文摘要

基于角色的对话系统旨在基于历史上下文和预定义角色产生一致的响应。与传统的对话生成不同,基于角色的对话需要考虑对话上下文和角色,这对连贯的培训构成了挑战。具体而言,这需要上下文和角色之间的微妙的体重平衡。为了实现这一目标,在本文中,我们提出了一个有效的框架(PAA),该框架通过我们设计的注意力自适应地整合了角色和上下文信息的权重。此外,将动态掩蔽机制应用于PAA,不仅在上下文和角色中删除冗余信息,而且还可以作为避免过度拟合的正规化机制。实验结果表明,与强大的基线相比,在自动和人类评估中,所提出的PAA框架的优越性。此外,与在全DATA环境中训练的模型相比,所提出的PAA方法可以在低资源制度中表现出色,该模型与在全DATA设置中训练的较大模型相比,仅20%至30%的数据获得了相似的结果。为了充分利用设计的有效性,我们设计了几种变体来以不同的方式处理加权信息,以显示加权和掩盖设计的必要性和充分性。

Persona-based dialogue systems aim to generate consistent responses based on historical context and predefined persona. Unlike conventional dialogue generation, the persona-based dialogue needs to consider both dialogue context and persona, posing a challenge for coherent training. Specifically, this requires a delicate weight balance between context and persona. To achieve that, in this paper, we propose an effective framework with Persona-Adaptive Attention (PAA), which adaptively integrates the weights from the persona and context information via our designed attention. In addition, a dynamic masking mechanism is applied to the PAA to not only drop redundant information in context and persona but also serve as a regularization mechanism to avoid overfitting. Experimental results demonstrate the superiority of the proposed PAA framework compared to the strong baselines in both automatic and human evaluation. Moreover, the proposed PAA approach can perform equivalently well in a low-resource regime compared to models trained in a full-data setting, which achieve a similar result with only 20% to 30% of data compared to the larger models trained in the full-data setting. To fully exploit the effectiveness of our design, we designed several variants for handling the weighted information in different ways, showing the necessity and sufficiency of our weighting and masking designs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源