论文标题

部分可观测时空混沌系统的无模型预测

Multi-view Contrastive Learning with Additive Margin for Adaptive Nasopharyngeal Carcinoma Radiotherapy Prediction

论文作者

Sheng, Jiabao, Zhang, Yuanpeng, Cai, Jing, Lam, Sai-Kit, Li, Zhe, Zhang, Jiang, Teng, Xinzhi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The prediction of adaptive radiation therapy (ART) prior to radiation therapy (RT) for nasopharyngeal carcinoma (NPC) patients is important to reduce toxicity and prolong the survival of patients. Currently, due to the complex tumor micro-environment, a single type of high-resolution image can provide only limited information. Meanwhile, the traditional softmax-based loss is insufficient for quantifying the discriminative power of a model. To overcome these challenges, we propose a supervised multi-view contrastive learning method with an additive margin (MMCon). For each patient, four medical images are considered to form multi-view positive pairs, which can provide additional information and enhance the representation of medical images. In addition, the embedding space is learned by means of contrastive learning. NPC samples from the same patient or with similar labels will remain close in the embedding space, while NPC samples with different labels will be far apart. To improve the discriminative ability of the loss function, we incorporate a margin into the contrastive learning. Experimental result show this new learning objective can be used to find an embedding space that exhibits superior discrimination ability for NPC images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源