论文标题

部分可观测时空混沌系统的无模型预测

A Novel Approach for Neuromorphic Vision Data Compression based on Deep Belief Network

论文作者

Khaidem, Sally, Sharma, Mansi, Nevatia, Abhipraay

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

A neuromorphic camera is an image sensor that emulates the human eyes capturing only changes in local brightness levels. They are widely known as event cameras, silicon retinas or dynamic vision sensors (DVS). DVS records asynchronous per-pixel brightness changes, resulting in a stream of events that encode the brightness change's time, location, and polarity. DVS consumes little power and can capture a wider dynamic range with no motion blur and higher temporal resolution than conventional frame-based cameras. Although this method of event capture results in a lower bit rate than traditional video capture, it is further compressible. This paper proposes a novel deep learning-based compression scheme for event data. Using a deep belief network (DBN), the high dimensional event data is reduced into a latent representation and later encoded using an entropy-based coding technique. The proposed scheme is among the first to incorporate deep learning for event compression. It achieves a high compression ratio while maintaining good reconstruction quality outperforming state-of-the-art event data coders and other lossless benchmark techniques.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源