论文标题

与矢量表示相互作用的车辆的有条件面向目标的轨迹预测

Conditional Goal-oriented Trajectory Prediction for Interacting Vehicles with Vectorized Representation

论文作者

Li, Ding, Zhang, Qichao, Lu, Shuai, Pan, Yifeng, Zhao, Dongbin

论文摘要

本文旨在解决交互式行为预测任务,并提出了一种新颖的条件目标轨迹预测(CGTP)框架,以共同生成两个相互作用剂的场景兼容轨迹。我们的CGTP框架是一个端到端和可解释的模型,包括三个主要阶段:上下文编码,目标交互式预测和轨迹交互式预测。首先,使用基于图的矢量化表示,旨在提取代理到代理和代理到目标之间的交互作用的目标网络(GOINET)。此外,有条件的目标预测网络(CGPNET)通过边际和条件目标预测指标的组合形式重点关注目标互动预测。最后,提出了导向导向的轨迹预测网络(GTFNET),以通过条件目标预测指标实现轨迹交互式预测,并以其他交互剂为输入的预测未来状态。此外,开发了一个新的目标互动损失,以更好地了解两个相互作用代理之间的目标候选者的关节概率分布。最后,提出的方法是在Argoverse运动预测数据集,内部切入数据集和Waymo Open Motion DataSet上进行的。比较结果表明,与主流预测方法相比,我们提出的CGTP模型的表现优越。

This paper aims to tackle the interactive behavior prediction task, and proposes a novel Conditional Goal-oriented Trajectory Prediction (CGTP) framework to jointly generate scene-compliant trajectories of two interacting agents. Our CGTP framework is an end to end and interpretable model, including three main stages: context encoding, goal interactive prediction and trajectory interactive prediction. First, a Goals-of-Interest Network (GoINet) is designed to extract the interactive features between agent-to-agent and agent-to-goals using a graph-based vectorized representation. Further, the Conditional Goal Prediction Network (CGPNet) focuses on goal interactive prediction via a combined form of marginal and conditional goal predictors. Finally, the Goaloriented Trajectory Forecasting Network (GTFNet) is proposed to implement trajectory interactive prediction via the conditional goal-oriented predictors, with the predicted future states of the other interacting agent taken as inputs. In addition, a new goal interactive loss is developed to better learn the joint probability distribution over goal candidates between two interacting agents. In the end, the proposed method is conducted on Argoverse motion forecasting dataset, In-house cut-in dataset, and Waymo open motion dataset. The comparative results demonstrate the superior performance of our proposed CGTP model than the mainstream prediction methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源