论文标题
拓扑错位模式的动态融化和凝结
Dynamic melting and condensation of topological dislocation modes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Bulk dislocation lattice defects are instrumental in identifying translationally active topological insulators (TATIs), featuring band inversion at a finite momentum (${\bf K}_{\rm inv}$). As such, TATIs host robust gapless modes around the dislocation core, when the associated Burgers vector ${\bf b}$ satisfies ${\bf K}_{\rm inv} \cdot {\bf b}=π$ (modulo $2 π$). From the time evolution of appropriate density matrices, we show that when a TATI via a real time ramp enters into a trivial or translationally inert topological insulating phase, devoid of gapless dislocation modes, the signatures of the preramp defect modes survive for a long time. More intriguingly, as the system ramps into a TATI phase from any translationally inert insulator, signature of the dislocation mode dynamically builds up near its core, which is prominent for slow ramps. We exemplify these generic outcomes for two-dimensional time-reversal symmetry breaking insulators. Proposed dynamic responses at the dislocation core can be experimentally observed in quantum crystals, optical lattices and metamaterials with time a tunable band gap.