论文标题

使用监督的深度学习来建模边缘FBG形状传感器

Using Supervised Deep-Learning to Model Edge-FBG Shape Sensors

论文作者

Roodsari, Samaneh Manavi, Huck-Horvath, Antal, Freund, Sara, Zam, Azhar, Rauter, Georg, Schade, Wolfgang, Cattin, Philippe C.

论文摘要

机器人辅助的微创手术中的连续机器人为无法通过小切口直接达到的目标解剖体提供了足够的访问。实现这种类似蛇的操纵器的精确而可靠的运动控制需要一个准确的导航系统,该系统不需要视线,并且不受电磁噪声的影响。纤维Bragg Grating(FBG)形状传感器,尤其是Edge-FBG,是该任务的有前途的工具。但是,在边缘FBG传感器中,Bragg波长之间的强度比带有可能会受到不受欢迎的弯曲相关现象影响的应变信息,从而使标准表征技术不适合这些传感器。我们在以前的工作中表明,深度学习模型有可能从完整的边缘FBG频谱中提取应变信息并准确预测传感器的形状。在本文中,我们进行了更彻底的研究,以找到具有较低预测错误的合适建筑设计。我们使用HyperBand算法以两个步骤搜索最佳的超参数。首先,我们将搜索空间限制为层设置,其中选择了表现最佳的配置。然后,我们修改搜索空间,以调整训练和损失计算超参数。我们还分析了输入和输出变量的各种数据转换,因为数据重新缩放可以直接影响模型的性能。此外,我们使用Siamese网络体系结构进行了判别训练,该介绍性网络体系结构采用了两个具有相同参数的CNN来学习相似目标值的光谱之间的相似性指标。所有评估的配置中表现最佳的网络体系结构可以通过3.11 mm的中间尖端误差来预测传感器的形状。

Continuum robots in robot-assisted minimally invasive surgeries provide adequate access to target anatomies that are not directly reachable through small incisions. Achieving precise and reliable motion control of such snake-like manipulators necessitates an accurate navigation system that requires no line-of-sight and is immune to electromagnetic noises. Fiber Bragg Grating (FBG) shape sensors, particularly edge-FBGs, are promising tools for this task. However, in edge-FBG sensors, the intensity ratio between Bragg wavelengths carries the strain information that can be affected by undesired bending-related phenomena, making standard characterization techniques less suitable for these sensors. We showed in our previous work that a deep learning model has the potential to extract the strain information from the full edge-FBG spectrum and accurately predict the sensor's shape. In this paper, we conduct a more thorough investigation to find a suitable architectural design with lower prediction errors. We use the Hyperband algorithm to search for optimal hyperparameters in two steps. First, we limit the search space to layer settings, where the best-performing configuration gets selected. Then, we modify the search space for tuning the training and loss calculation hyperparameters. We also analyze various data transformations on the input and output variables, as data rescaling can directly influence the model's performance. Moreover, we performed discriminative training using Siamese network architecture that employs two CNNs with identical parameters to learn similarity metrics between the spectra of similar target values. The best-performing network architecture among all evaluated configurations can predict the sensor's shape with a median tip error of 3.11 mm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源