论文标题

迈向值得信赖的多模式运动预测:输出的整体评估和解释性

Towards trustworthy multi-modal motion prediction: Holistic evaluation and interpretability of outputs

论文作者

Limeros, Sandra Carrasco, Majchrowska, Sylwia, Johnander, Joakim, Petersson, Christoffer, Sotelo, Miguel Ángel, Llorca, David Fernández

论文摘要

预测其他道路代理的运动使自动驾驶汽车能够执行安全有效的路径计划。这项任务非常复杂,因为道路代理的行为取决于许多因素,并且可能的未来轨迹数量可能是相当大的(多模式)。提议解决多模式运动预测的大多数先前方法是基于具有有限解释性的复杂机器学习系统。此外,当前基准中使用的指标不能评估问题的所有方面,例如产出的多样性和可接受性。在这项工作中,我们旨在基于对值得信赖的人工智能设计的一些要求,旨在朝着值得信赖的运动预测系统设计。我们专注于评估标准,鲁棒性和产出的解释性。首先,我们全面分析评估指标,确定当前基准的主要差距,并提出一个新的整体评估框架。然后,我们引入了一种通过模拟感知系统中的噪声来评估空间和时间鲁棒性的方法。为了增强输出的解释性并在提出的评估框架中产生更平衡的结果,我们提出了一个可以将其附加到多模式运动预测模型的意图预测层。通过一项调查来评估该方法的有效性,该调查探讨了多模式轨迹和意图的可视化元素。拟议的方法和发现为自动驾驶汽车的值得信赖运动预测系统的发展做出了重大贡献,从而使该领域朝着更大的安全性和可靠性前进。

Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning. This task is very complex, as the behaviour of road agents depends on many factors and the number of possible future trajectories can be considerable (multi-modal). Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpretability. Moreover, the metrics used in current benchmarks do not evaluate all aspects of the problem, such as the diversity and admissibility of the output. In this work, we aim to advance towards the design of trustworthy motion prediction systems, based on some of the requirements for the design of Trustworthy Artificial Intelligence. We focus on evaluation criteria, robustness, and interpretability of outputs. First, we comprehensively analyse the evaluation metrics, identify the main gaps of current benchmarks, and propose a new holistic evaluation framework. We then introduce a method for the assessment of spatial and temporal robustness by simulating noise in the perception system. To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework, we propose an intent prediction layer that can be attached to multi-modal motion prediction models. The effectiveness of this approach is assessed through a survey that explores different elements in the visualization of the multi-modal trajectories and intentions. The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autonomous vehicles, advancing the field towards greater safety and reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源