论文标题

$ 2T $ -QUTRIT,两种模式的玻色质Qutrit

The $2T$-qutrit, a two-mode bosonic qutrit

论文作者

Denys, Aurélie, Leverrier, Anthony

论文摘要

量子计算机经常操纵在两级量子系统上编码的物理Qubit。 Bosonic Qubit代码通过在无限维fock空间的精心选择的子空间中编码信息来偏离这个想法。这个较大的物理空间提供了自然保护,以防止实验性缺陷,并允许验证代码规避适用于受二维希尔伯特空间约束的状态的NO-GO结果。肺泡量子量子通常以单个骨率模式定义,但是寻找可以表现出更好性能的多模式版本是有意义的。 在这项工作中,基于这样的观察,即猫代码生活在由有限数字的有限亚组索引的连贯状态的跨度中,我们考虑了居住在二进制四面体组$ 2t $ 2t $ 2t $ quaternions索引的24个相干国家中的两种模式概括。由此产生的$ 2T $ -QUTRIT自然继承了该组$ 2T $的代数属性,并且在低损失政权中似乎非常健壮。我们启动其研究并确定稳定剂以及该玻色质代码的一些逻辑运算符。

Quantum computers often manipulate physical qubits encoded on two-level quantum systems. Bosonic qubit codes depart from this idea by encoding information in a well-chosen subspace of an infinite-dimensional Fock space. This larger physical space provides a natural protection against experimental imperfections and allows bosonic codes to circumvent no-go results that apply to states constrained by a 2-dimensional Hilbert space. A bosonic qubit is usually defined in a single bosonic mode but it makes sense to look for multimode versions that could exhibit better performance. In this work, building on the observation that the cat code lives in the span of coherent states indexed by a finite subgroup of the complex numbers, we consider a two-mode generalisation living in the span of 24 coherent states indexed by the binary tetrahedral group $2T$ of the quaternions. The resulting $2T$-qutrit naturally inherits the algebraic properties of the group $2T$ and appears to be quite robust in the low-loss regime. We initiate its study and identify stabilisers as well as some logical operators for this bosonic code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源