论文标题

互动模仿双人运动原语的学习

Interactive Imitation Learning of Bimanual Movement Primitives

论文作者

Franzese, Giovanni, Rosa, Leandro de Souza, Verburg, Tim, Peternel, Luka, Kober, Jens

论文摘要

使用双机器人设置执行双人任务可以大大增加对工业和日常生活应用的影响。但是,执行双人任务带来了许多挑战,例如单臂政策的同步和协调。本文提出了安全的,互动运动的原始算法(简单)算法,以直接从人类动力学示范中教授和纠正单一或双臂阻抗政策。此外,它提出了基于高斯流程回归(GPR)的策略编码的新颖图表,其中保证单臂运动可以收敛于轨迹,然后朝着所证明的目标汇聚。根据政策的认知不确定性对机器人僵硬的调节,可以轻松地通过人类反馈和/或适应外部扰动来重塑运动。我们在真实的双臂设置上测试了简单的算法,在该设置中,老师进行了单独的单臂演示,然后仅使用动力学反馈或在本地进行了本地重新设计以在不同高度选择一个盒子。

Performing bimanual tasks with dual robotic setups can drastically increase the impact on industrial and daily life applications. However, performing a bimanual task brings many challenges, like synchronization and coordination of the single-arm policies. This article proposes the Safe, Interactive Movement Primitives Learning (SIMPLe) algorithm, to teach and correct single or dual arm impedance policies directly from human kinesthetic demonstrations. Moreover, it proposes a novel graph encoding of the policy based on Gaussian Process Regression (GPR) where the single-arm motion is guaranteed to converge close to the trajectory and then towards the demonstrated goal. Regulation of the robot stiffness according to the epistemic uncertainty of the policy allows for easily reshaping the motion with human feedback and/or adapting to external perturbations. We tested the SIMPLe algorithm on a real dual-arm setup where the teacher gave separate single-arm demonstrations and then successfully synchronized them only using kinesthetic feedback or where the original bimanual demonstration was locally reshaped to pick a box at a different height.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源