论文标题

ODNET:用于小行星掩星检测的卷积神经网络

ODNet: A Convolutional Neural Network for Asteroid Occultation Detection

论文作者

Cazeneuve, Dorian, Marchis, Franck, Blaclard, Guillaume, Dalba, Paul A., Martin, Victor, Asencioa, Joé

论文摘要

我们建议设计和构建一种算法,该算法将使用卷积神经网络(CNN)和Unistellar网络的观察结果,以可靠地检测小行星掩体。 Unistellar网络由公民科学家拥有的10,000多个数字望远镜制成,并经常用于记录小行星掩体。为了处理该网络产生的观察力量增加,我们需要一种快速可靠的方法来分析掩体。为了解决这个问题,我们用二十种不同类型的光度信号的恒星图像训练了CNN。该网络的输入由两个恒星的片段图像组成,一个围绕恒星,该图像应被隐秘,并用于比较的参考星。我们需要参考恒星来区分由较差的大气条件引入的真实掩星和人工制品。我们的掩盖检测神经网络(ODNET)可以用91 \%的精度和87 \%的回忆分析三个恒星。该算法足够快,坚固,因此我们可以设想将EVSCOPES纳入船上以提供实时结果。我们得出的结论是,公民科学代表了掩盖未来研究和发现的重要机会,并且人工智能的应用将使我们能够更好地利用不断增长的数据来分类小行星。

We propose to design and build an algorithm that will use a Convolutional Neural Network (CNN) and observations from the Unistellar network to reliably detect asteroid occultations. The Unistellar Network, made of more than 10,000 digital telescopes owned by citizen scientists, and is regularly used to record asteroid occultations. In order to process the increasing amount of observational produced by this network, we need a quick and reliable way to analyze occultations. In an effort to solve this problem, we trained a CNN with artificial images of stars with twenty different types of photometric signals. Inputs to the network consists of two stacks of snippet images of stars, one around the star that is supposed to be occulted and a reference star used for comparison. We need the reference star to distinguish between a true occultation and artefacts introduced by poor atmospheric condition. Our Occultation Detection Neural Network (ODNet), can analyze three sequence of stars per second with 91\% of precision and 87\% of recall. The algorithm is sufficiently fast and robust so we can envision incorporating onboard the eVscopes to deliver real-time results. We conclude that citizen science represents an important opportunity for the future studies and discoveries in the occultations, and that application of artificial intelligence will permit us to to take better advantage of the ever-growing quantity of data to categorize asteroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源