论文标题

数据驱动的科学发现计算成像

Data-Driven Computational Imaging for Scientific Discovery

论文作者

Olsen, Andrew, Hu, Yolanda, Ganapati, Vidya

论文摘要

在计算成像中,用于信号采样的硬件和用于对象重建的软件的串联设计以提高功能。此类系统的示例包括计算机断层扫描(CT),磁共振成像(MRI)和超分辨率显微镜。与更传统的相机相反,在这些设备中,进行间接测量,并将计算算法用于重建。这允许高级功能,例如超分辨率或三维成像,推动了科学发现的前沿。但是,这些技术通常需要大量的测量,从而导致低通量,运动伪影和/或辐射损害,并限制应用。已经提出了以数据驱动的方法来减少所需的测量数量,但它们主要需要地面真相或参考数据集,这可能是不可能收集的。这项工作概述了一种自我监督的方法,并探讨了将未来的工作用于使这种技术可用于实际应用所必需的工作。光发射二极管(LED)阵列显微镜是一种允许在具有高分辨率和视野的两个维度和三个维度中可视化透明对象的模态,作为说明性示例。我们在https://github.com/vganapati/led_pvae上发布代码,并在https://doi.org/10.6084/m9.figshare.21232088上发布了实验数据。

In computational imaging, hardware for signal sampling and software for object reconstruction are designed in tandem for improved capability. Examples of such systems include computed tomography (CT), magnetic resonance imaging (MRI), and superresolution microscopy. In contrast to more traditional cameras, in these devices, indirect measurements are taken and computational algorithms are used for reconstruction. This allows for advanced capabilities such as super-resolution or 3-dimensional imaging, pushing forward the frontier of scientific discovery. However, these techniques generally require a large number of measurements, causing low throughput, motion artifacts, and/or radiation damage, limiting applications. Data-driven approaches to reducing the number of measurements needed have been proposed, but they predominately require a ground truth or reference dataset, which may be impossible to collect. This work outlines a self-supervised approach and explores the future work that is necessary to make such a technique usable for real applications. Light-emitting diode (LED) array microscopy, a modality that allows visualization of transparent objects in two and three dimensions with high resolution and field-of-view, is used as an illustrative example. We release our code at https://github.com/vganapati/LED_PVAE and our experimental data at https://doi.org/10.6084/m9.figshare.21232088 .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源