论文标题

移动边缘计算系统中的感应和计算的接头优化和计算

Joint Optimization of Sensing and Computation for Status Update in Mobile Edge Computing Systems

论文作者

Chen, Yi, Chang, Zheng, Min, Geyong, Mao, Shiwen, Hämäläinen, Timo

论文摘要

物联网设备最近用于检测周围环境中的状态过渡,然后将状态更新传输到基站以进行将来的系统操作。为了满足准确系统控制状态更新的严格及时性要求,引入了信息时代(AOI)来量化感官数据的新鲜度。由于计算资源有限,可以将状态更新卸载到移动边缘计算服务器(MEC)服务器以确保信息新鲜度。由于感应操作不足生成的状态更新可能无效并导致额外的处理时间,因此需要同时考虑数据传感和处理操作。在这项工作中,我们制定了联合数据感应和处理优化问题,以确保状态更新的新鲜感并减少物联网设备的能耗。然后,将公式的NP硬性问题分解为采样,传感和计算卸载优化问题。之后,我们提出了一种多变量的迭代系统成本最小化算法,以优化系统开销。仿真结果表明,我们方法在降低系统成本和在不同情况下的传感和处理的优势方面的效率。

IoT devices recently are utilized to detect the state transition in the surrounding environment and then transmit the status updates to the base station for future system operations. To satisfy the stringent timeliness requirement of the status updates for the accurate system control, age of information (AoI) is introduced to quantify the freshness of the sensory data. Due to the limited computing resources, the status update can be offloaded to the mobile edge computing (MEC) server for execution to ensure the information freshness. Since the status updates generated by insufficient sensing operations may be invalid and cause additional processing time, the data sensing and processing operations need to be considered simultaneously. In this work, we formulate the joint data sensing and processing optimization problem to ensure the freshness of the status updates and reduce the energy consumption of IoT devices. Then, the formulated NP-hard problem is decomposed into the sampling, sensing and computation offloading optimization problems. Afterwards, we propose a multi-variable iterative system cost minimization algorithm to optimize the system overhead. Simulation results show the efficiency of our method in decreasing the system cost and dominance of sensing and processing under different scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源