论文标题

不变的$ 2 $ - 结

Invariants of $2$-knots

论文作者

Conway, Anthony

论文摘要

这项简短的调查是在Birs会议“拓扑4.5”的Birs会议上写的,涉及打结的$ 2 $ -SPHERES的不变式,价格为$ S^4 $,也称为$ 2 $ - 结。它涵盖了从结的代数拓扑提取的不变性,包括亚历山大不变式,法伯湖配对和卡森 - 戈登不变式,以及量规理论和组合不变式。详细信息稀缺,新结果不存在。

This short survey, which was written to accompany a minicourse at the BIRS conference "Topology in dimension 4.5", concerns invariants of knotted $2$-spheres in $S^4$, also known as $2$-knots. It covers invariants extracted from the algebraic topology of the knot exterior, including Alexander invariants, the Farber-Levine pairing and Casson-Gordon invariants, as well as gauge theoretic and combinatorial invariants. Details are scarce and new results inexistant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源