论文标题
注入常识的语言不足的学习框架,用于增强多语言新闻头条中的政治两极分子的预测
A Commonsense-Infused Language-Agnostic Learning Framework for Enhancing Prediction of Political Polarity in Multilingual News Headlines
论文作者
论文摘要
预测新闻头条的政治极性是一项具有挑战性的任务,在使用低资源语言的多语言环境中变得更加具有挑战性。为了解决这一问题,我们建议通过翻译 - 翻译策略来利用推论常识知识,以引入学习框架。首先,我们使用翻译和检索方法来获取目标语言的推论知识。然后,我们采用注意力机制来强调重要的推论。我们最终将召开的推论集成到偏见预测任务的多语言预训练的语言模型中。为了评估我们框架的有效性,我们介绍了一个超过62.6万个多语言新闻头条的数据集,其中五种欧洲语言用各自的政治两极分化。我们评估了几种最先进的多语言预训练的语言模型,因为它们的性能往往会因语言而变化(低/高资源)。评估结果表明,无论采用什么模型,我们提出的框架都是有效的。总体而言,只有头条新闻训练的最佳性能模型表现出0.90的精度和F1,而jaccard得分为0.83。借助我们的框架知识,同一型号的精度和F1的含量增加了2.2%,而Jaccard得分为3.6%。将我们的实验扩展到各个语言表明,我们分析的斯洛文尼亚人的模型比数据集中的其他语言要差得多。为了调查这一点,我们评估翻译质量对预测性能的影响。这表明性能的差异很可能是由于翻译质量不佳。我们在以下网址发布数据集和脚本:https://github.com/swati17293/kg-multi-bias以进行未来的研究。我们的框架有可能使记者,社会科学家,新闻制作人和消费者受益。
Predicting the political polarity of news headlines is a challenging task that becomes even more challenging in a multilingual setting with low-resource languages. To deal with this, we propose to utilise the Inferential Commonsense Knowledge via a Translate-Retrieve-Translate strategy to introduce a learning framework. To begin with, we use the method of translation and retrieval to acquire the inferential knowledge in the target language. We then employ an attention mechanism to emphasise important inferences. We finally integrate the attended inferences into a multilingual pre-trained language model for the task of bias prediction. To evaluate the effectiveness of our framework, we present a dataset of over 62.6K multilingual news headlines in five European languages annotated with their respective political polarities. We evaluate several state-of-the-art multilingual pre-trained language models since their performance tends to vary across languages (low/high resource). Evaluation results demonstrate that our proposed framework is effective regardless of the models employed. Overall, the best performing model trained with only headlines show 0.90 accuracy and F1, and 0.83 jaccard score. With attended knowledge in our framework, the same model show an increase in 2.2% accuracy and F1, and 3.6% jaccard score. Extending our experiments to individual languages reveals that the models we analyze for Slovenian perform significantly worse than other languages in our dataset. To investigate this, we assess the effect of translation quality on prediction performance. It indicates that the disparity in performance is most likely due to poor translation quality. We release our dataset and scripts at: https://github.com/Swati17293/KG-Multi-Bias for future research. Our framework has the potential to benefit journalists, social scientists, news producers, and consumers.