论文标题

通过延迟的预处理差异私人自适应优化

Differentially Private Adaptive Optimization with Delayed Preconditioners

论文作者

Li, Tian, Zaheer, Manzil, Liu, Ken Ziyu, Reddi, Sashank J., McMahan, H. Brendan, Smith, Virginia

论文摘要

隐私噪声可能会否定在差异私有模型培训中使用自适应优化器的好处。先前的工作通常通过使用辅助信息(例如,公共数据)来提高自适应优化的有效性。在这项工作中,我们探索技术以估计并有效地适应私人自适应优化的梯度几何形状,而无需辅助数据。通过观察到适应性方法可以忍受陈旧的预处理的动机,我们提出了差异性的私人适应性训练,并使用延迟的预处理(DP^2),一种简单的方法,它构建了延迟但较少嘈杂的预处理器,以更好地实现适应性的好处。从理论上讲,我们为凸面和非凸问题提供了融合保证,并分析延迟和降低隐私噪声之间的权衡。从经验上讲,我们在几个现实世界中的数据集中探索了DP^2,表明它可以相对于非自适应基线的收敛速度提高4倍,并匹配需要辅助数据的最先进优化方法的性能。

Privacy noise may negate the benefits of using adaptive optimizers in differentially private model training. Prior works typically address this issue by using auxiliary information (e.g., public data) to boost the effectiveness of adaptive optimization. In this work, we explore techniques to estimate and efficiently adapt to gradient geometry in private adaptive optimization without auxiliary data. Motivated by the observation that adaptive methods can tolerate stale preconditioners, we propose differentially private adaptive training with delayed preconditioners (DP^2), a simple method that constructs delayed but less noisy preconditioners to better realize the benefits of adaptivity. Theoretically, we provide convergence guarantees for our method for both convex and non-convex problems, and analyze trade-offs between delay and privacy noise reduction. Empirically, we explore DP^2 across several real-world datasets, demonstrating that it can improve convergence speed by as much as 4x relative to non-adaptive baselines and match the performance of state-of-the-art optimization methods that require auxiliary data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源