论文标题
分布式模型预测协方差转向
Distributed Model Predictive Covariance Steering
论文作者
论文摘要
本文提出了分布式模型预测协方差转向(DIMPC),用于在随机不确定性下进行多代理控制。我们方法的范围是将协方差转向理论,分布式优化和模型预测控制(MPC)融合到一个安全,可扩展和分散的单个框架中。最初,我们提出了一种问题制定,它使用Wasserstein距离来指导多代理系统的状态分布到所需的目标,并具有概率的约束以确保安全性。然后,我们通过利用干扰反馈策略参数化来进行协方差转向和安全约束的可拖动近似,将此问题转换为有限维优化。为了解决后一个问题,我们使用乘数的交替方向方法得出了一种基于共识的算法。然后将此方法扩展到一个后退的地平线,该形式得出了提出的DIMPCS算法。在多种具有数百个机器人的多机器人任务上进行的仿真实验证明了DIMPC的有效性。通过与相关随机MPC方法的比较,还强调了所提出方法的出色可伸缩性和性能。最后,在多机器人平台上的硬件结果还验证了DIMPC在实际系统上的适用性。 https://youtu.be/tzwqozuj2kq中有一个带有所有结果的视频。
This paper proposes Distributed Model Predictive Covariance Steering (DiMPCS) for multi-agent control under stochastic uncertainty. The scope of our approach is to blend covariance steering theory, distributed optimization and model predictive control (MPC) into a single framework that is safe, scalable and decentralized. Initially, we pose a problem formulation that uses the Wasserstein distance to steer the state distributions of a multi-agent system to desired targets, and probabilistic constraints to ensure safety. We then transform this problem into a finite-dimensional optimization one by utilizing a disturbance feedback policy parametrization for covariance steering and a tractable approximation of the safety constraints. To solve the latter problem, we derive a decentralized consensus-based algorithm using the Alternating Direction Method of Multipliers. This method is then extended to a receding horizon form, which yields the proposed DiMPCS algorithm. Simulation experiments on a variety of multi-robot tasks with up to hundreds of robots demonstrate the effectiveness of DiMPCS. The superior scalability and performance of the proposed method is also highlighted through a comparison against related stochastic MPC approaches. Finally, hardware results on a multi-robot platform also verify the applicability of DiMPCS on real systems. A video with all results is available in https://youtu.be/tzWqOzuj2kQ.